Псевдопроводный шлюз TDM TDMOE -401 Руководство по эксплуатации

<u>НИКА</u> 2013

Оглавление

1 Назначение	3
2 Технические характеристики	3
3 Указания мер безопасности	4
4 Комплект поставки	5
5 Установки по умолчанию	5
6 Описание оборудования	6
7 Установка и подключение	7
8 Настройка	8
8.1 Подключение к web-интерфейсу	8
8.2 Настройка локальной сети	9
8.3 Настройка SNMP	10
8.4 Выбор источника синхронизации	11
8.5 Настройка портов Е1	12
8.6 Настройка соединения TDM по Ethernet	14
8.7 Кросс-коммутация каналов	16
8.8 Обновление программного обеспечения	18
9 Подключение к DAHDI Asterisk	19
Приложение А	21
Приложение Б	24
Приложение В	25
Лист изменений	26

1 Назначение

Псевдопроводный шлюз TDMOE-401 (далее по тексту устройство) обеспечивает передачу каналов TDM (полного или отдельных канальных интервалов потоков E1) по сетям с коммутацией пакетов (Ethernet) по технологии TDMoE (Time Division Multiplexing over Ethernet – Мультиплексирование потока с временным разделением и передачей через сети Ethernet).

ТDMoE эмулирует «медный провод» и, с точки зрения конечного оборудования, представляет собой обычное проводное соединение E1 между двумя телефонными станциями или другим аналогичным оборудованием. Такой подход к организации связи позволяет прозрачно соединять имеющееся оборудование, не сталкиваясь с проблемами совместимости оконечного оборудования и сетей передачи данных. Прозрачное подключение позволяет передавать сигнализацию без сложного преобразования. В качестве сигнализации может быть использована либо CAS, либо CSS.

Протокол TDMoE реализован непосредственно над MAC уровнем Ethernet, поэтому в тракте Ethernet между устройствами нельзя использовать маршрутизаторы (допустимы только хабы и коммутаторы). К качеству передачи пакетов Ethernet (QoS) предъявляются высокие требования – джиттер задержки пакетов не более 1.5 мс.

Шлюз TDMoE требует минимальной настройки. В базовой конфигурации достаточно лишь указать его MAC-адрес, чтобы устройства увидели друг друга и указать каналы на передачу. Для экономии полосы пропускания возможна передача только канальных интервалов, выбранных пользователем.

Устройство может использоваться разработчиками систем компьютерной телефонии в качестве интерфейсного устройства потоков E1 (G.703/G.704). Протокол передачи данных совместим с протоколом DAHDI-dynamic-Eth используемым в IP ATC Asterisk.

2 Технические характеристики

Основные параметры портов Е1.

Технические характеристики соответствуют ГСТУ 45.023, ГОСТ 27763 и рекомендациям G.703.6,G.704 ITU-T, распространяющимся на стыковые сигналы, параметры стыка и структуру стыка ИКМ-30.

- Основные параметры линейного сигнала портов Е1:
- измерительное нагрузочное сопротивление 120 Ом активное;
- номинальное пиковое напряжение импульса в линии 3 В;
- пиковое напряжение пробела (при отсутствии импульса) от 0 до 0,3 В;
- минимальный принимаемый уровень минус 6 дБ относительного уровня передачи.

• Отношение амплитуд импульсов положительной и отрицательной полярности в середине импульса по длительности - от 0,95 до 1,05.

• Отношение длительностей импульсов положительной и отрицательной полярности при половине номинальной амплитуды - от 0,95 до 1,05.

- Параметры интерфейса в режиме ИКМ-30:
- -характеристики линейного порта по рекомендации G.703 ITU-T;
- -импеданс порта 120 Ом симметричный;
- -скорость 2048 кбит/с \pm 50 ppm;
- -линейное кодирование АМІ, HDB-3;
- -формат цикла по рекомендации G.704 ITU-Т;

TDMOE-401

- -канальная емкость 30 каналов ТЧ.
- Тактовая синхронизация:

-точность осциллятора (частоты):

1) в нормальных условиях - не хуже ± 5 ppm;

2) в диапазоне рабочей температуры - не хуже ± 50 ppm.

Основные параметры портов Ethernet

-скорости 10/100 Мбит/с в соответствии с стандартами IEEE 802.3 10BASE-T Ethernet и IEEE 802.3u 100BASE-TX Fast Ethernet;

-автоматическое определение скорости;

- -автоматическое определение дуплексного режима;
- -автоматическое определение типа используемого кабеля (прямой/перекрещенный);

-управление потоком в соответствии IEEE 802.3х;

-максимальная длина пакета - 1536 байт.

Электропитание:

-напряжение внешнего источника питания - минус 48 В (минус 60 В). Допустимые колебания напряжения - от 36 В до 72 В;

-потребляемый ток - не более 0,25 А.

Габаритные размеры:

-длина — 250 мм;

-ширина - 110 мм;

-высота - 30 мм.

Macca

- не более 1,0 кг.

Климатические параметры:

-рабочая температура - от 0° до плюс 50° С;

-максимальная относительная влажность - 80 % при температуре плюс 25° С;

-атмосферное давление - от 84 до 106 кПа (от 630 до 795 мм рт. ст.).

3 Указания мер безопасности

К работам допускается технический персонал, знакомый с Правилами безопасной эксплуатации и устройством оборудования, имеющий квалификационную группу по технике безопасности не ниже третей.

Замену устройства и осмотр монтажа производить только при отключенном напряжении питания на устройстве.

Корпус должен быть подключен к защитному заземлению.

При работе с устройством необходимо соблюдать "Правила технической эксплуатации электроустановок потребителей" и "Правила техники безопасности при эксплуатации электроустановок потребителей".

Строго соблюдать правила пожарной безопасности по ГОСТ 12.1.004.

4 Комплект поставки

В комплект поставки входят:

- -мультиплексор TDMOE-401 1 шт;
- -разъём RJ 45 4 шт;
- -руководство по эксплуатации 1 шт;
- -паспорт 1 шт;
- -разъём Molex MX 5569-04 1 шт;
- -контакты к разъёму 2 шт.

5 Установки по умолчанию

IP-адрес - 192.168.0.2 Имя пользователя - не установлено Пароль - не установлено

6 Описание оборудования

На передней панели устройства (Рисунок 1) расположен порт Eth, разъемы 4-х портов E1 и их индикаторы, а также разъем питания и выключатель питания.

Назначение контактов разъемов приведено в Приложение А.

Рисунок 1: Внешний вид устройства

Порт Eth используется для контроля и управления устройством, а также передачи пакетов трафика TDMoE, . Индикаторы под разъемом – Activity/Link.

Под портами Е1 расположены два индикаторы(красный и зеленый). Зеленый индикатор сигнализирует о наличии соединения по порту, красный — об ошибках или обрыве соединения.

Светодиод «РОW» сигнализирует о включении устройства.

Светодиод «IND» индициирует процесс загрузки и инициализации устройства.

На задней панели устройства размещена кнопка «RESET». Нажатие кнопки во время включения позволяет кратковременно (до следующей перезагрузки) установить IP адрес по умолчанию и сбросить логин и пароль.

7 Установка и подключение

Перед подключением устройства прочтите данное руководство пользователя. Убедитесь, что у Вас имеется все необходимое оборудование, а также информация по всем используемым устройствам.

Пожалуйста, при установке следуйте ниже перечисленым рекомендациям.

- Установите устройство таким образом, чтобы избежать воздействия на устройство источников сильного электромагнитного поля, вибрации, пыли и прямых солнечных лучей.

- Убедитесь, что существует надлежащий теплоотвод и соответствующая вентиляция вокруг устройства.

- Подключите корпус устройства к защитному заземлению.

- Подготовите кабеля и подключите их. Распайка кабелей приведена в Приложение А.

- Подайте питание на устройство и включите его. Процедура инициализации занимает некоторое время, по истечении которого устройство становится доступным для конфигурации. После окончания загрузки программы светодиод «IND» погаснет.

- Подключите устройство к компьютеру и произведите конфигурацию устройства. Для подключения устройства к компьютеру используется стандартный «прямой» Eth-кабель или кабель с «перекрутом». Настройка и управление выполняется с помощью встроенного web-интерфейса.

- Сохраните конфигурацию. Чтобы выполненные Вами настройки не были потеряны при аппаратной перезагрузке (случайном или преднамеренном отключении питания устройства), рекомендуется сохранить их в энергонезависимой памяти устройства. Операция сохранения доступна на всех вебстраницах и производится нажатием кнопки «Сохранить».

8 Настройка

8.1 Подключение к web-интерфейсу.

Запустите WEB-браузер (Firefox, Opera или др.) и зайдите на устройство, введя IP-адрес устройства в адресную строку панели навигации (IP адрес устройства по умолчанию 192.168.0.2). Для успешной работы с web-интерфейсом устройства в WEB-браузере должна быть включена поддержка JavaScript и Cookies. Убедитесь, что данные опция не были отключены другим программным обеспечением (например, антивирусной программой или другим ПО, обеспечивающим безопасную работу в глобальной сети), запущенным на Вашем компьютере.

Если при попытке подключения к web-интерфейсу устройства браузер выдает ошибку типа «Невозможно отобразить страницу», убедитесь, что устройство правильно подключено к компьютеру.

В случае успешного подключения открывается главная страница устройства.

📙 НИКА		
 ✓ Главная Установки IP Установки SNMP Синхронизация 	TDMoE	
• Установки Е1	Модель:	TDMOE401
Состояние Е1 Установки TDMoF	Версия:	1.3_4900
© Состояние TDMoE	Ревизия от:	22.11.2013
💿 Карта каналов	MAC	0050C27361C5
	Название хоста:	HOSTNAME
	Контактная информация:	CONTACT
Сохранить	Размещение:	LOCATION
	Время работы:	1:47:48

Рисунок 2: Web-страничка "Главная"

На странице «Главная» приведена общая информация по устройству и его программному обеспечению (версия внутреннего ПО и дата его создания, МАС-адрес устройства, время непрерывной работы и др.)

В левой части страницы представлена структура web-интерфейса устройства. Вы можете сразу перейти на необходимые страницы web-интерфейса, нажав соответствующую страницу. Снизу структуры доступных web-страничек устройства, находится кнопка «Сохранить» позволяющая сохранить настройки в долговременную память.

Обязательно сохраняйте настройки после любого изменения параметров устройства. Без сохранения, после очередной перезагрузки изменения будут утеряны.

8.2 Настройка локальной сети.

Если необходимо изменить IP-адрес LAN-интерфейса и маску локальной подсети перейдите на страницу «Установки IP» (Рис. 2). В полях IP-адрес и IP маска внесите новые значение и нажмите кнопку «Применить». После применения изменений снова зайдите на устройство, введя новый IP-адрес в адресную строку панели навигации.

Устройству назначен уникальный заводской МАС-адрес. Изменение пользователем МАС-адреса не рекомендуется. Изменения поля МАС вступят в силу только после перезагрузки устройства.

Для разрешения доступа на web-интерфейс только авторизированым пользователям - введите имя пользователя(логин) и пароль администратора.

Изменения вступят в силу после нажатия кнопки «Применить».

Нажатие кнопки «RESET» на задней панели во время включения кратковременно (до следующей перезагрузки) устанавливает IP адрес по умолчанию (192.168.0.2) и сбрасывает логин и пароль.

📙 НИКА		
● Главная & Установки IP	Настройка IP	
 Установки SNMP Синхронизация 	IP Address	192.168.0.2
• Установки Е1	IP Mask	255.255.255.0
• Состояние Е1	Gateway	192.168.0.1
 установки ТDмое Состояние TDMoE Карта каналов 	Мас	0050C27361C5
	Login	
	Password	
Сохранить		Применить

Рисунок 3: Страница "Установки ІР"

8.3 Настройка SNMP.

Настройка SNMP выполняется на странице "Установки SNMP" (рис.3).

📙 НИКА		
 Главная Установки IP 	Настройка SNMP	
Установки SNMP	Community Public	public
Синхронизация Установки Е1	Community Trap	trap
Состояние Е1	Trap Server Address	192.168.0.1
Установки ТDMoE	Cold Start Trap Enable	
 Состояние томое Карта каналов 	Link Down Trap Enable	
	Link Up Trap Enable	
	System Contact	CONTACT
Сохранить	System Name	HOSTNAME
	System Location	LOCATION

Рисунок 4: Страница "Установки SNMP"

Простой протокол сетевого управления Simple Network Management Protocol (SNMP) – протокол для управления и контроля сетевого оборудования. SNMP дает возможность станциям управления сетью читать и изменять настройки сетевых устройств. Используйте SNMP для настройки системных характеристик для правильной работы, контроля характеристик и обнаружения потенциальных проблем в устройстве, группе устройств или сети.

Устройства поддерживают программное обеспечение SNMP (SNMP агент), работающее локально на оборудовании. Определенный набор управляемых объектов обслуживается SNMP и используется для управления устройством. Эти объекты определены в базе данных управляющей информации MIB (Management Information Base), которая обеспечивает стандартное представление информации, контролируемое встроенным SNMP-агентом.

Устройство поддерживает SNMP версии 1.0 и 2.0. SNMP-агент декодирует входящие SNMP-сообщения и отвечает на запросы объектов базы управляющей информацией MIB, сохраненных в базе данных. SNMP-агент обновляет объекты MIB для формирования статистики и счетчиков.

В SNMP версиях v.1 и v.2 аутентификация пользователей осуществляется при помощи так называемой «строки сообщества» («**community string**»), данная функция похожа на пароли. Удаленный пользователь приложения SNMP и агента должен использовать одну и ту же community string. Пакеты SNMP от станций, не прошедших аутентификацию будут игнорироваться (удаляться).

«Traps» - это аварийные сообщения, сообщающие о событиях, происходящих в устройстве. События могут быть такими серьезными, как перезапуск (Cold Start) или менее, как например, изменение статуса порта(Link Down и Link Up). Коммутатор создает сообщения «traps» и отправляет их к «trap» получателю (или сетевому менеджеру).

8.4 Выбор источника синхронизации.

Для обеспечения тактовой синхронизации в сетях "традиционной" телефонии используется иерархический метод принудительной синхронизации с парами генераторов ведущий-ведомый (master-slave). При невыполнении требований единой синхронизации периодически будут возникать операции вставки/удаления данных («slip/skip»-операции), что приводит к ухудшению качества телефонной связи (абоненты слышат щелчки, проблемы при передаче факсов, ...).

Синхронизация в устройстве возможна от таких источников:

• от любого из принимаемого потока Е1.

• адаптивная синхронизация — по темпу приема сетевых пакетов TDMoE с порта Ethernet. В этом режиме тактовая частота потока E1 формируется адаптивным методом.

от внутреннего генератора.

📙 НИКА		
 Главная Установки IP Установки SNMP Синхронизация Установки E1 Состояние E1 Установки TDMoE Состояние TDMoE Карта каналов 	Выбор источника синхронизации Порт источника синхронизации (SLAVE mode)	E1.1

Рисунок 5: Выбор источника синхронизации

В устройстве возможен только один источник синхронизации. Все остальные источники будут работать в режиме MASTER и получать синхронизацию от порта работающего в SLAVE режиме.

8.5 Настройка портов Е1.

Настройка портов производится на странице «Установки Е1» (Рис. 6). В системе присутствует 4 порта Е1. Выбор порта производится вкладками.

📑 НИКА		
 Главная Установки IP Установки SNMP Синуронизация 	Конфигурация порта Е1 и каналов Порт #1 Порт #2 Порт #3 Порт #4	
Установки Е1	Порт #	E1.2
Состояние Е1 Установки TDMoE	Вкл.	
Состояние TDMoE	Кодировка	HDB3 💌
🔍 Карта каналов	Синхронизация	MASTER
	Вкл. CRC4	
	16-й канальный интервал	
Сохранить	CAS сигнализация (BSK enable)	
	Инверсия АВхх бит	
	Маскирование ххСD бит	
	Значение АВСD бит на свободном канале	0101

Рисунок 6: Настройка конфигурации порта Е1

Порт# - название порта в системе.

Вкл. - включение порта.

Кодировка — выбор кодирования сигнала AMI или HDB3.

Вкл. CRC4 — включение CRC4.

САЅ сигнализация – включение режима ИКМ30 — работа с выделенным сигнальным каналом (BSK).

Инверсия АВхх – инверсия выходных сигнальных битов.

Маскирование ххСD – маскирование незначащих сигнальных битов.

Значение ABCD на свободном канале – значение на передачу сигнальных битов на свободном канале (без коммутации), или при выключенной CAS сигнализацией на потоке.

Изменение сразу вступают в силу.

Проверка текущего состояния и статистика работы потоков Е1 производится на странице «Состояние E1» (Рис.7).

📙 НИКА		
 Главная Установки IP Установки SNMP Синхронизация 	Состояние порта E1 #1 Порт #1 Порт #2 Порт #3 Порт #4	
• Установки Е1	Состояние	ОК
✓ Состояние Е1 Остановки ТОМоЕ	Счетчик ошибок кода (BER)	0
 Состояние ТDMoE 	Счетчик потерь сигнала (LOS)	0
🛡 Карта каналов	Счетчик потерь синхр. по фрейму (LOF)	0
	Счетчик потерь синхр. по мультифрейму (LOM)	0
	Счетчик ошибок CRC	0
Сохранить	Число проскальзываний (SLIP)	0
	G.821	
	Длительность поражения сигнала ошибками (ES)	0:00:02
	Продолжительность многократного поражения ошибками (SES)	0:00:02
	Время, свободное от ошибок (EFS)	1:51:15
	Время готовности порта (AS)	1:51:17
	Время неготовности порта (UAS)	0:00:00
		Сброс Ошибок

Рисунок 7: Состояние портов Е1

В рекомендации G.821 в качестве параметра ошибок цифрового соединения выбраны два следующих:

- число секунд с ошибками (Errored Second, ES), к которым относится каждая секунда, в которой имеется по крайней мере одна ошибка. Как следует из определения, при таком подходе одиночная ошибка и пакет ошибок не различаются.
- число секунд с многочисленными ошибками (Severely Errored Second, SES), где SES означает секунду с коэффициентом ошибок ≥ 10-3.

Заметим, что наличие двух параметров оценки ошибок позволяет не только более точно определить качество цифрового соединения, но и во многих случаях оказывается полезным при локализации возможных повреждений.

Все время измерения разбивается на две половины: время готовности канала (AS) и время неготовности канала (UAS). Время неготовности канала начинают отсчитывать после приема 10 последовательных секунд с параметром BER хуже 10 -3, при потере сигнала(LOS) или потере фреймовой синхронизации(LOF). Измерение времени ES и SES параметров ошибки производятся только во время готовности канала.

8.6 Настройка соединения TDM по Ethernet.

Окно настройки соединения представлено на Рис.8.

📙 НИКА		
 Главная Установки IP 	ТDMoE. Настройка соединения	
Установки SNMP Синхронизация	Вкл.	V
• Установки Е1	Синхронизация	MASTER
• Состояние Е1	Кол. каналов	6
Установки IDMoE Остояние TDMoE	Точка удаленного подключения	
Карта каналов	IP Remote Address	192.168.0.3
	MAC Remote Address	00000000000
	Суб-адрес	0
Сохранить	Выделеный сигнальный канал	
	CAS сигнализация (BSK enable)	
	Инверсия АВхх бит	
	Маскирование xxCD бит	

Рисунок 8: Настройка соединения TDMoE

Параметр IP Remote Address и MAC Remote Address задает соответственно IP и MAC адрес удаленной станции.

Установка IP адреса имеет выше приоритет чем MAC. Поле **MAC Remote Address** при установленном IP игнорируется. При установки IP адреса (в поле введено значение отличное от нулей) соединение будет начинаться только после обнаружения удаленного хоста. Этот режим позволяет избежать передачи трафика TDMoE в отсутствии удаленной стороны.

Если установлен MAC адрес (IP адрес установлен в нули) передача пакетов TDMoE начнется сразу.

Если в оба поля (**IP Remote Address** и **MAC Remote Address**) введены нули устройство введет настройки для соединения автоматически после получения пакетов TDMoE с удаленной стороны и запустит соединение.

Поле Суб-адрес представляет собой соответствующее поле в заголовке пакета TDMoE. Поле служит для дополнительно идентификации потока.

Настройки сигнализации по выделенному сигнальному каналу аналогичны настройкам по потоку Е1. При включении CAS сигнализации вместе с данными ТЧ каналов будут приниматься и передаваться их сигнальные каналы с 16 канала потоков Е1.

Задание количества каналов на передачу производится в поле **Кол. каналов**. Кросс-коммутация каналов на TDMoE производится на вкладке **Карта каналов**. Если количество каналов равно 0 модуль TDMoE будет выключен.

Текущее состояние соединения представлено на вкладке Состояние ТDMoE (Рис.9).

НИКА

ГлавнаяУстановки IP	Состояние TDMOE	
Установки SNMP	Состояние	ок
 Установки Е1 	Неравномерность приема - дрожание	+10 нс
• Состояние Е1	Счетчики ошибок	
Установки ТDMoE	Потерь соединений	0
Карта каналов	Отброшенных пакетов	0
	Нарушения очередности	0
	Отброшенных фреймов Е1	0
Сохранить	Повторов фреймов Е1	0
	Параметры удаленной стороны	
	МАС-адрес	0050C27361C6
	Суб-адрес	0
	Кол. каналов	6
	Кол. выборок	8
	Счетчик	56303
		Сброс ошибок

Рисунок 9: Текущее состояние TDMoE соединения

Поле **Неравномерность приема-дрожание** — показывает среднее значение джиттера задержки приема сетевых пакетов. Значение рассчитывается с точностью до единиц нсек за время около 1 сек.

Если неравномерность длительное время не приближается к нулю, будут накапливаться ошибки проскальзывания — Отброшенных фреймов E1 или Повторов фреймов E1. Это возможно по нескольким причина:

- неверно задан источник синхронизации;
- сеть Ethernet перегружена.

Поля Отброшенных пакетов и Нарушение очередности позволяют контролировать принятые пакеты и их прохождение по сети.

Поле счетчика Отброшенных пакетов показывает количество пакетов, что были отброшены из-за:

- не прошли проверки МАС или Суб-адреса;
- количество выборок не равняется 8;
- количество каналов больше 256.

8.7 Кросс-коммутация каналов.

Настройка кросс-коммутации каналов производится на web-страничке «Карта каналов» (Рис. 10)

Рисунок 10 - Конфигурация кросс-коммутации

Порт #1 ... # 4 – каналы соответствующих портов потоков Е1.

Кроме каналов E1 на странице доступны также каналы TDMoE пакета.

Каждый канальный интервал (КИ) представляет символом прямоугольника, сверху которого написан номер КИ относительно своего порта, а строка снизу информирует о текущем соединение. Например 7-й канал порта E1#1 соединен с 6-м каналом порта TDMoE#1.

Возможные обозначения соединения приведены в таблице 1.

Таблица 1: Обозначение типов соединений карты каналов

Обозначение	Описание
23 E1.4[7]	E1.x[y] Соединеие с каналом у порта E1 #x
6 oE[5]	Соединение с каналом ТОМоЕ
17 X	Канал без соединения (свободный канал).
0 FAS	Служебный канал фреймовой синхронизации. Для выбора недоступен.
16 CAS	Выделенный канал битовой сигнализации. Установка канал в этот режим производится включением CAS сигнализации соответствующего порта E1 в меню «Установки E1». Для выбора недоступен.
17 LOOP	Шлейф канала.

Для установления соединения необходимо выбрать два КИ. Одно нажатие мышкой на КИ производит выбор, повторное нажатие — отмена выбора. Выбранные каналы выделяются цветом и миганием. Информация о выбранных КИ отображается в информационных окнах. Нажатие на кнопку «<->» создает соединение.

Рисунок 11: Создание соединения КИ

Разъединение каналов производится аналогичным образом. Нажатие на КИ с существующими соединениями произведет подсветку этих соединений. Нажатие кнопки «-Х-» произведет разъединения каналов (Рис 12).

Карта коммутации каналов						11: E1.	1[11]				-x-	#12: E	1.1[12]]				
По	рт Е1																	
#1	0 FAS	1 oE[0]	2 oE[1]	3 oE[2]	4 oE[3]	5 oE[4]	6 oE[5]	7 oE[6]	8 oE[7]	9 oE[8]	10 oE[9]	11 E1.1[12]	12 E1.1[11]	13	x	14 X	15	х
#1	16 oE[10]	17 X	18 X	19 X	20 X	21 X	22 X	23 X	24 X	25 Х	26 Х	27 X	28 X	29	x	30 X	31	х

Рисунок 12: Разъединение существующего соединения

Соединение/разъединение каналов осуществляется сразу, без перезагрузки устройства.

8.8 Обновление программного обеспечения.

На странице «Обновление ПО» Вы можете обновить внутреннее программное обеспечение. Данная страница не отображается в основном меню устройства. Для входа на страницу введите в адресную строку панели навигации IP-адрес устройства и название страницы /load.html. Например: 192.168.0.2/load.html.

Внимание! Во время обновления программного обеспечения не отключайте питание. Это может повлечь за собой выход устройства из строя.

♦ ⇒ ③ 192.168.0.2/load.html	☆ ▼ C	⋒
Обновление программы		
Шаг1 - Очистка flash	Erase	
Шаг2 - Загрузка файла	Вибрати Файл не вибрано. Load	
ШагЗ - Перезагрузка	Reboot	
Рисунок 13: Страни	ица Обновление ПО.	

ine filor ic. cipalinga conobienne ito.

1.Скачайте файл с новой версией программного обеспечения на сайте <u>www.nika.vin.ua</u>.

2. Нажмите кнопку Erase для удаления текущего и подготовки места под новое ПО. Дождитесь окончания процедуры стирания.

2.Нажмите кнопку Обзор на странице **Обновление ПО**, чтобы определить местоположение файла с новой версией ПО.

3.Нажмите кнопку Load для загрузки нового внутреннего ПО и дождитесь ее окончания (около пяти минут).

4. Перезагрузите устройство.

Если процедура прошла успешно после перезагрузки индикатор «IND» может мигать с периодичностью около 1 секунды в течении довольно продолжительного времени (около 15 минут). После окончания загрузки нового ПО устройство автоматически запустится.

9 Подключение к DAHDI Asterisk

Драйверу DAHDI мы должны сообщить ряд параметров, таких как MAC адрес устройства, количество каналов, приоритет синхронизации. Рассмотрим конфигурацию DAHDI с передачей одного потока с CSS сигнализацией(31 канал, 16-канал общеканальной сигнализацией) и синхронизацией от устройства TDMoE. Для подключения устройства к серверу Asterisk, с установленным драйвером DAHDI, необходимо сделать следующее:

1. Создаем резервную копию файла конфигурации DAHDI #mv /etc/dahdi/system.conf /etc/dahdi/system.conf.sample

2. Создаем пустой файл конфигурации #touch /etc/dahdi/system.conf

3. Открываем файл конфигурации DAHDI #nano /etc/dahdi/system.conf и вписываем туда: dynamic=eth,eth0/00:50:C2:73:61:C5,31,1 # В качестве MAC адреса указываем MAC устройства # Nika TDMoE-DAHDI - 31 канал, CSS, sync-E1 # Единичка в конце - тип синхронизации SLAVE. bchan=1-15 dchan=16 bchan=17-31 alaw=1-15,17-31 loadzone = us defaultzone = us

4. Создаем резервную копию файла конфигурации DAHDI каналов Asterisk #mv /etc/asterisk/chan_dahdi.conf /etc/asterisk/chan_dahdi.conf.sample

5. Создаем пустой файл конфигурации DAHDI каналов Asterisk #touch /etc/asterisk/chan_dahdi.conf

6. Открываем файл конфигурации DAHDI каналов Asterisk #nano /etc/asterisk/chan dahdi.conf и вписываем туда: [channels] group=1 context=from-trunk *switchtype* = *euroisdn* signalling = pri cpe callerid=asreceived usecallerid=ves hidecallerid=no *callwaiting=yes* overlapdial=yes pridialplan=unknown usecallingpres=yes callwaitingcallerid=yes rxgain=0.0 txgain=0.0 threewaycalling=yes

echocancel=yes echocancelwhenbridged=yes faxdetect=both faxbuffers=>8,full channel => 1-15,17-31

8. Рестартуем сервис DAHDI # service dahdi restart Unloading DAHDI hardware modules: done Loading DAHDI hardware modules: wct4xxp: [OK] wcte12xp: [OK] wct1xxp: [OK] wcte11xp: [OK] wetdm24xxp: [OK] wcfxo: [OK] [OK] wetdm: wcb4xxp: [OK] wetc4xxp: [OK] xpp usb: [OK] Running dahdi_cfg: [OK]

9. Рестартуем сервис Asterisk # service asterisk restart Stopping safe_asterisk: [OK] Shutting down asterisk: [OK] Запускается asterisk:

10. Проверяем статусы DAHDI каналов. Утилита dahdi_tool покажет состояние всех устройств. #dahdi tool

Все статусы должны быть ОК, No alarms. Если устройство TDMoE находится в статусе RED ALARM, то от него не приходят TDMoE пакеты. Возможные причины – несовпадение адресов в конфигурации DAHDI и устройства или отсутствие мастера у драйвера DAHDI.

Счетчики ошибок при успешном соединении TDMoE не должны расти.

Приложение А

Разъем Е1 Тип: RJ45-8

вид спереди

Таблица 2 - Контакты разъема Е1

Номер контакта	Наименование цепи Назначение		Цвет провода	
1	ТТІР Передача Е1 Белс		Бело-оранжевый	
2	TRING	Передача Е1	ча Е1 Оранжевый	
3	RTIP Приём E1 Бело-с		Бело-зелёный	
4	Не используются		Синий	
5	Не используются		Бело-синий	
6	RRING	Приём Е1	Зелёный	
7	Не используются		Бело-коричневый	
8	Не используются		Коричневый	

TDMOE-401

Приложение А (продолжение)

Разъем "Питание" Тип: Molex MX-5569-04

Рисунок 15 - Разъем "Питание"

Таблица	3_	Контакты	пазъема	"Питание"
гаолица	5 -	Контакты	разьсма	Питанис

Номер контакта	Назначение	
1	- 60B	
2		
3	_	
4	+ 60B	

Приложение А (продолжение)

Разъем "Ethernet" Тип: RJ45-8

Рисунок 16 - Разъем "Ethernet",

вид спереди

Таблица 4 - Контакты разъема "Ethernet"

Номер контакта	Назначение	Цвет провода	
1	RX+	Бело-оранжевый	
2	RX-	Оранжевый	
3	TX+	Бело-зелёный	
4		Синий	
5		Бело-синий	
6	TX-	Зелёный	
7		Бело-коричневый	
8		Коричневый	

Приложение Б

Перечень терминов, сокращений, условных обозначений

Условное обозначение	Определение, полное наименование	
BCK, BSK	Выделенный сигнальный канал	
TDM	(Time-division multiplexing) Мультиплексирование с разделением по времени	
ТЧ	Канал тональной частоты	
CAS	Сигнализация по выделенным каналам	
CSS	Общеканальная сигнализация	

Приложение В

Расчёт необходимой полосы пропускания.

Необходимая полоса пропускания для передачи по Eth зависит от следующих параметров:

- количества передаваемых таймслотов (8 байт на канал) N;
- использование BSK сигнализации (4 бита на канал с выравневанием по 2-м байтам);

Заголовок пакета с CRC составляет (EthHeader + TDMoEHeader + CRC) => H=14+8+4=26 байт.

Выдача пакета происходит после накопления в буфере 8-ми выборок канала за 1 мсек интервал, соответственно за 1 секунду устройство выдаст 1000 пакетов.

При расчете размера пакета необходимо учитывать, что пакет не может быть меньше 64 байт. При формировании меньшего, пакет будет дополнятся к 64 байтам.

Без использования BSK сигнализации формула расчета размера пакета выглядит следующим образом:

$$PktSize = (H+8 \cdot N) = (26+8 \cdot N)(Byte);$$

if (PktSize < 64) PktSize = 64;

При включенной передачи BSK сигнализации:

$$PktSize = \left(H + 8 \cdot N + round\left(\frac{N+3}{4}\right) \cdot 2\right) (Byte);$$

if (PktSize < 64) PktSize = 64;

Полоса пропускания рассчитывается:

$$Rate = \frac{PktSize \cdot 1000}{1000} (KByte/sec) = \frac{PktSize \cdot 8 \cdot 1000}{1000} (Kbit/sec)$$

Каналов	Скорость без ВSК		Скорость с BSK	
		Размер пакета, байт	Кбит/с	Размер пакета, байт
1	512(Кбит/с)	64	512(Кбит/с)	64
4	512(Кбит/с)	64	512(Кбит/с)	64
5	528(Кбит/с)	66	560(Кбит/с)	70
8	720(Кбит/с)	90	752(Кбит/с)	94
16	1,23(Мбит/с)	154	1,3(Мбит/с)	162
30	2,12(Мбит/с)	266	2,26(Мбит/с)	282
31	2,19(Мбит/с)	274	2,32(Мбит/с)	290
62	4,17(Мбит/с)	522	4,43(Мбит/с)	554
124	8,14(Мбит/с)	1018	8,64(Мбит/с)	1080

TDMOE-401

Лист изменений

Ревизия	Дата	Изменения
1	07.12.13	Создание руководства по эксплуатации

26